1	Effects of ocean acidification on young-of-the-year golden king crab (Lithodes
2	aequispinus) survival and growth
3 4 5	
6	W. Christopher Long*, Katherine M. Swiney ¹ , and Robert J. Foy
7	Kodiak Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service,
8	National Oceanic and Atmospheric Administration, 301 Research Court, Kodiak, AK
9	99615 USA
10	*Corresponding author. E-mail: <u>chris.long@noaa.gov</u> , Telephone: 907-481-1715, Fax:
11	907-481-1701, Orchid ID: 0000-0002-7095-1245
12	¹ Present address: Fisheries Resources Division, Southwest Fisheries Science Center,
13	National Marine Fisheries Service, National Oceanic and Atmospheric Administration,
14	8901 La Jolla Shores Drive, La Jolla, CA 92037 USA
15	
16	Acknowledgments
17	This work was funded through the NOAA Ocean Acidification Program. We
18	thank B. Daly for rearing the juvenile crab and staff of the Kodiak Laboratory for help
19	performing the experiments. Previous versions of this paper were improved by comments
20	from E. Fedwa and J. Long and two anonymous reviewers. The findings and conclusions
21	in the paper are those of the authors and do not necessarily represent the views of the
22	National Marine Fisheries Service, NOAA. Reference to trade names or commercial
23	firms does not imply endorsement by the National Marine Fisheries Service, NOAA.
24 25	

26 Abstract:

27 Ocean acidification, a reduction in the pH of the oceans caused by increasing CO₂, can 28 have negative physiological effects on marine species. In this study, we examined how 29 CO₂-driven acidification affected growth and survival of juvenile golden king crab 30 (Lithodes aequispinus), an important fishery species in Alaska. Juveniles were reared 31 from larvae in surface ambient pH seawater at the Kodiak Laboratory. Newly molted 32 early benthic instar crabs were randomly assigned to one of three pH treatments: 1) 33 Surface ambient pH ~8.2, 2) likely in situ ambient pH 7.8, and 3) pH 7.5. Thirty crabs 34 were held in individual cells in each treatment for 127 days and checked daily for molting 35 or death. Molts and dead crabs were photographed under a microscope and measured 36 using image analysis to assess growth and morphology. Mortality was primarily 37 associated with molting in all treatments, differed among all treatments, and was highest 38 at pH 7.5 and lowest at ambient pH. Crabs at pH 7.5 were smaller that crabs at ambient 39 pH at the end of the experiment, both in terms of carapace length and wet mass; had a 40 smaller growth increment after molting; and had a longer intermolt period. Carapace 41 morphology was not affected by pH treatment. Decreased growth and increased 42 mortality in laboratory experiments suggest that lower pH could affect golden king crab 43 stocks and fisheries. Future work should examine if larval rearing conditions affect the 44 juvenile response to low pH. 45

- 46
- 47

48

49 Introduction

50 Anthropogenic CO₂ is being released into the atmosphere and oceanic uptake of this CO₂ 51 has resulted in a decrease of 0.1 pH in global mean surface waters over the last century 52 (Caldeira and Wickett 2003). This reduction in oceanic pH, known as ocean acidification 53 (OA), is predicted to reduce global ocean surface pH to \sim 7.8 by the end of the century 54 and pH ~7.5 by the end of 2200 (Caldeira and Wickett 2003; Bopp et al. 2013; IPCC 55 2014). The rate of pH change is expected to be higher in high latitude areas, including 56 Alaska waters, in part because CO_2 uptake is higher in cold waters (Fabry et al. 2009). 57 Within 50 years, waters around Alaska are predicted to be perennially undersaturated 58 with regard to aragonite (Mathis et al. 2015). 59 Ocean acidification has a negative effect on many marine species, although the 60 effects are highly variable among taxa, species, and even life history stages (Kroeker et 61 al. 2013). Within the decapod crustaceans there is is similar range of responses; ocean 62 acidification has a wide range of effects on a number of physiological parameters and can 63 increase mortality (Menu-Courey et al. 2019; Turra et al. 2020), decrease growth (Swiney 64 et al. 2017; McLean et al. 2018), cause morphological deformities (Kurihara et al. 2008; 65 Agnalt et al. 2013), change the metabolic rate (Hans et al. 2014; Long et al. 2019), 66 decrease reproductive output (Swiney et al. 2016), change exoskeleton properties (Coffey et al. 2017), and alter hemolymph chemistry in many species (Pane and Barry 2007), 67 68 although some species are quite tolerant (deVries et al. 2016; Glandon and Miller 2017; 69 Glandon et al. 2019). This is of concern, both because crustaceans are an important part 70 of many ecosystems (Fabry et al. 2008) and because many species support high-value

fisheries, and OA is projected to decrease stock size and fishery yields (Punt et al. 2016;
Heinrich and Krause 2017; Punt et al. 2020).

73 Golden king crab (*Lithodes aequispinus*) is an ecologically important deep-water 74 species with a distribution range from Japan to British Columbia, Canada. In Alaska, they 75 are a commercially important species found in the Gulf of Alaska, Bering Sea, and 76 Aleutian Island waters (Donaldson and Byersdorfer 2005); the Aleutian Islands golden 77 king crab fishery had an ex-vessel gross revenue of \$23.74 million in 2012 (Garber-Yonts 78 and Lee 2013). Golden king crab are found approximately 200 to 1,000 m depth 79 (Donaldson and Byersdorfer 2005), but data on the depth distribution is non-existent for 80 both larvae and newly settled young-of-the-year crab. Older juveniles, sub-mature but 81 CL > -40 mm, are found on continental slopes between 350 and 400 m depth in the Sea 82 of Okhotsk, at approximately 500 m depth in the Bering Sea (Tarverdieva and Zgurovsky 83 1985), at depths greater than 548 m in the eastern Aleutian Islands (Blau et al. 1996), and between 623 and 583 m depth on the Patton Seamount in the Gulf of Alaska (Shirley 84 85 2006). Shirley and Zhou (1997) hypothesized that golden king crab larvae occur at 86 depths greater than 200 m and remain near the benthic substrate; if this is true, then 87 juvenile settlement likely occurs at these depths. In contrast, juveniles in northern British 88 Columbia fjords are most commonly found in waters less than 100 m deep (Sloan 1985). 89 It is important to examine the effects of ocean acidification on different life stages 90 of the golden king crab since most if not all stages of this deep-water species are likely 91 already living in water at a pH well below surface oceanic pHs. Most carbon chemistry 92 data is limited to surface, shallow, and shelf waters, not the deep-waters that golden king 93 crab inhabit; we summarize the available information in the terms used in the studies

94	cited, but do not mean to imply that any one measure of the carbonate system (e.g., pH or							
95	saturation state) is necessarily the driving factor in the crabs' physiological response.							
96	However, the current calcite saturation horizon is approximately 250 m in the eastern							
97	Bering Sea (Cross et al. 2013), and in September 2008 in the Gulf of Alaska, waters							
98	deeper than approximately 175 to 225 m were undersaturated with regard to aragonite							
99	(Fabry et al. 2009). These calcite and aragonite saturation horizons are shallower than							
100	the depths that golden king crab of all life stages are generally thought to inhabit							
101	(Donaldson and Byersdorfer 2005). In the Gulf of Alaska, the pH at the depths that adult							
102	and older juvenile golden king crab inhabit are between about pH 7.7 and 7.8 (Byrne et							
103	al. 2010). In this study, we reared young-of-the-year golden king crab in surface ambient							
104	pH (~8.2, pCO ₂ ~ 325 ppm), pH 7.8 (likely <i>in situ</i> pH, pCO ₂ ~ 800 ppm), and pH 7.5							
105	$(pCO_2 \sim 1600 \text{ ppm})$ waters for 127 days to study the effects of ocean acidification on							
106	survival, growth, and morphology.							
107								
108	Methods							
109	Sample Collection and Laboratory Study							
110	Ovigerous golden king crab were collected from the Aleutian Islands, Alaska							
111	(51°18.30'N, 179°2.49'E and 52°17.47'N, 175°14.02'E), March and May 2013, and							
112	shipped live to the Alaska Fisheries Science Center's Kodiak Laboratory seawater facility							
113	in Kodiak, Alaska, where larval rearing took place from December 2013 to March 2014.							
114	Larvae from two females were reared in surface ambient pH flow-through water							
115	(temperatures 4-5 ° C, Salinity ~31, pH ~ 8.0) and, because the larvae are lecithotrophic,							
116	were unfed. The subsequent young-of-the-year crab were used in this study. Juveniles							

were approximately 3 weeks after the molt to C1 and were likely all at the C1 or C2 stageat the beginning of the experiment.

119 Ninety young-of-the-year crab were randomly assigned to one of three 120 acidification treatments based on projected global ocean surface pH levels: 1) surface 121 ambient (hereafter ambient) pH ~8.2, 2) pH 7.8 (c. ~2100), and 3) pH 7.5 (c. ~2200) 122 (Caldeira and Wickett 2003), for a total of 30 young-of-the-year crab per treatment. The 123 surface ambient treatment represents local ambient conditions, not the typical conditions 124 for young-of-the-year golden king crab; the pH 7.8 treatment is reflective of the in situ 125 pH in older juvenile golden king crab habitat and is likely similar to that of younger 126 juveniles (Byrne et al. 2010); the pH 7.5 treatment is acidified relative to both the current 127 surface ambient and *in situ* golden king crab conditions. Throughout this paper we refer 128 to pH because it is the parameter we were controlling for; however, we recognize that pH 129 is not necessarily the only or even main driver of the physiological response of marine 130 animals among the component of the carbonate chemistry of seawater. In this 131 experiment, because temperature, pressure, and salinity were all constant, by keeping the 132 pH within a narrow range we also kept each of the other components of the carbonate 133 system within a narrow range (Table 1). Each treatment was contained in a 53 (L) \times 38 134 $(W) \times 23$ (H) cm tub that was placed randomly in the experimental area. Each tub had a 135 flow rate of ~250 ml/minute and water was chilled to 5° C (Table 1). Although there was 136 not replication at the tub level, given the isolation of the crabs from each other combined 137 with a high flow rate, the effect of tub can reasonably be assumed to be negligible. A 138 temperature logger was placed into each tank and data recorded every 30 minutes. Tubs 139 were covered with 88.9 µm thick black plastic to minimize light penetration. Young-of-

140 the-year crab were reared in individual inserts constructed from PVC pipe 40 mm inner 141 diameter with 750 µm mesh attached to the bottom, and the inserts were placed inside the 142 treatment tub. This size insert was determined to be the optimal size for individual 143 rearing of juvenile red king crab larger than the crab in this study (Swiney et al. 2013); 144 therefore, it was assumed that this size insert was more than adequate for this study. 145 Inserts were raised off the bottom of the tub by placing them on plastic grating. Water 146 was delivered into each insert via a submersible pump connected to a manifold. Crab 147 were fed three times per week to excess on a gel diet of Gelly Belly (Florida Aqua Farms, 148 Inc., Dade City, FL, USA) enhanced with Cyclop-eeze powder (Argent Laboratories, 149 Redmond, WA, USA), pollock bone powder (US Department of Agriculture, Agricultural 150 Research Service, Kodiak, AK, USA), and astaxanthin. Old food was removed prior to 151 feeding.

152 Each insert was checked daily for molts and mortalities, and exuvia and 153 mortalities were removed for growth and morphometric analysis. At the end of the 154 experiment, the remaining crab were carefully blotted dry with a tissue, weighed, and 155 placed in a -80° C freezer. Carapaces from exuvia, mortalities, and from the live crabs at 156 end of the experiment were photographed under a dissecting microscope. Carapace 157 width, carapace length, rostrum base width, orbital spine width, and the first spine length (Fig. 1) were measured using Image Pro Plus v. 7.0.1.658 imaging software (Media 158 159 Cybernetics, Inc., Bethesda, MD, USA) (Long et al. 2013b). All these measurements 160 were included in the morphometric analysis (below). Throughout this paper "initial" 161 refers to the size of the crabs at the beginning of the experiment, "final" refers to the size of surviving crabs at the end of the experiment, and "1st molt" to the size of crabs after 162

molting the first time. No crabs molted more than once. The experiment began April 15,2014, and ran for 127 days.

- 165
- 166

Seawater Acidification

167 Sand filtered seawater was acidified using the same methods described in Long et al. 168 (2013a). Ambient treatment water was pumped into the laboratory from 15 and 26 m 169 depth intakes. In short, a tank of pH 5.5 was established by bubbling CO₂ into ambient 170 seawater. This pH 5.5 water was mixed with ambient seawater in the treatment head 171 tanks via peristaltic pumps controlled by Honeywell controllers and Durafet III pH 172 probes. The ambient head tank did not receive any pH 5.5 water. Waters from the 173 treatment head tanks were then supplied to the treatment tubs. pH_F (free scale) and 174 temperature were measured daily in each experimental tub using a Durafet III pH probe 175 calibrated with a TRIS buffer, and when the pH deviated from the target pH by more than 176 ± 0.02 pH units, the Honeywell controller set points were adjusted to bring the pH back to 177 the target value. Weekly water samples from the treatment tubs were taken and poisoned 178 with mercuric chloride unless they were analyzed the same day as collection. Total 179 alkalinity (TA) was determined at the Kodiak Laboratory using a VINDTA 3S 180 (Marianda, Kiel, Germany), and dissolved inorganic carbon (DIC) was determined at an analytic laboratory using a VINDTA 3C coupled to a 5012 Coulometer (UIC Inc., Joliet, 181 182 IL). Both laboratories used Certified Reference Material from the Dickson Laboratory 183 (Scripps Institute, San Diego, CA) and the procedures in DOE (1994). The other 184 components of the carbonate chemistry in the seawater were calculated using the seacarb 185 package in R (V 3.6.1, Lavigne and Gattuse 2012)

Statistical Analysis

188

187

189 Differences in growth, expressed as carapace length (CL), were analyzed with 190 separate ANOVAs for mean initial size, size after molting, and percentage increase in size $(100 \frac{CL_{initial} - CL_{final}}{CL_{initial}})$ in Systat (v13.2.01, San Jose, CA). The number of days from 191 192 the beginning of the experiment until molting was also analyzed with an ANOVA. Wet 193 weight at the end of the experiment for crab that had all of their limbs was analyzed with 194 a fully crossed ANOVA. Carapace length and percentage increase in size or wet weight 195 were the dependent variables and pH the factor. When significant differences were 196 detected, Tukey's HSD post-hoc pairwise comparison was run to examine differences 197 among treatments. Levene's test for homogeneity of variance and the Anderson-Darling 198 test for normality were used to determine if data met the assumptions of ANOVA: data 199 were found to meet the assumptions, except initial size was not normally distributed. 200 Morphometric measurements were normalized (expressed in terms of their z-201 values) prior to analysis to ensure that measurements of larger features did not dominate 202 the analyses. Morphometrics were analyzed with a fully crossed 2-way permutational 203 analysis of variance (PERMANOVA) with pH treatment and molt number (initial measurements and measurements taken after the 1st molt) as factors in Primer 6.1.13 204 205 (Plymouth, UK). The assumption of homogeneity of dispersion was verified with the 206 permutational dispersion test. The data was visualized using a nonmetric 207 multidimensional plot.

208 Survival in each treatment was fit to a set of models using maximum likelihood 209 and assuming a binomial distribution of errors in R. In the first set of models developed *a priori*, we assumed a constant mortality rate such that: $p_m = e^{-mt}$, where p_m is the 210 211 cumulative probability of mortality, *m* is the mortality rate and *t* is the time in days. We 212 included models where *m* was constant among the treatments and where it differed 213 among the three treatments. However, these models proved a very poor fit to the data 214 based on visual assessments of the predictions compared to the data; on closer 215 examination, it appeared that mortality increased substantially in the later part of the 216 experiment at about the same time that molting was occurring. Since molting was 217 relatively synchronous within each treatment (as expected given the crabs were all from 218 the same batch of larvae), this led us to include logistic (sigmoidal) models such that: $p_m = s + \frac{1-s}{1+(\frac{t}{t-s})^b}$, where s is the predicted final survival, t_{50} is the time in days to 50% 219 220 mortality, and b is a slope parameter. We fit two logistic models to the data, one in 221 which the three parameters were the same among the treatments and one in which they all 222 differed. Although these models were an improvement over the constant mortality 223 models visual assessments of the fits indicated they too were unsatisfactory, in part 224 because they failed to capture mortality at times other than molting. In order to 225 accommodate mortality during both molting and during the intermolt, we considered a series of models where the mortality rate was allowed to vary over time such that $S_t =$ 226 $S_{t-1}(1-m_t)$ where S_t is the cumulative survival at time = t and m_t is the daily mortality 227 228 rate at time = t. Note that when m_t is constant for all t the model is identical to the 229 constant survival model above. We then modeled m_t as a combination of base, constant mortality and mortality during molting such that $m_t = m + E_t m_{molt}$ where m is the base 230

231 mortality rate for all causes except molting, E_t is the probability of molting (ecdysis) at 232 time = t, and m_{molt} is the probability of death during molting. As above, because molting 233 was synchronous, we considered that the cumulative probability of molting could be modeled as a logistic equation $p_{molt} = \frac{1}{1 + (\frac{t}{t_{moltro}})^b}$ where t_{molt50} is the time at which 50% 234 235 of the crabs had molted. The rate of molting is then proportional to the slope of this logistic curve such that $E_t = c \frac{dp_{molt}}{dt} = c \frac{bt_{molt50}^b t^{b-1}}{(t^b + t_{molt50}^b)^2}$ and where c is a constant of 236 proportionality. Thus, $m_t = m + cm_{molt} \frac{bt_{molt50}^b t^{b-1}}{(t^b + t_{molt50}^b)^2}$. In this model c and m_{molt} cannot 237 238 be estimated independently so we substituted in a combined constant d such that d = cm_{molt} . We then fit three models, one where the three pH treatments were the same, 239 240 one in which m was constant among the three pH treatments and b, t_{molt50} , and d varied, 241 and one where m, b, t_{molt50} , and d all varied among the pH treatments. We calculated the 242 Akaike's Information Criterion corrected for sample size (AIC_c) for each model and used 243 it to select the best one. Models with a $\triangle AICc$ of < 2 were considered to explain the data 244 equally well (Burnham and Anderson 2002).

245

246 **Results**

247 The data and metadata underlying this article are included as a supplement ((Online

248 Resource 1).

249 Target temperature and pHs were achieved through the experiment. DIC increased with

- 250 decreasing pH, pCO₂ increased with decreasing pH, and alkalinity did not vary with
- 251 treatment. Aragonite was supersaturated in the ambient treatment but undersaturated in

252 the pH 7.8 and pH 7.5 treatments. Calcite was supersaturated in the ambient and pH 7.8 253 treatments, and undersaturated in the pH 7.5 treatment (Table 1). 254 At the end of the experiment all crabs that had not died had molted once. Overall 255 17 crabs successfully molted in the ambient treatment, 20 in pH 7.8, and 14 in pH 7.5. 256 Young-of-the-year crab golden king crab mean initial size was 2.68 (SE = 0.009) mm CL 257 and did not differ with pH treatment (ANOVA, $F_{2.74} = 0.290$, p = 0.749), but after 258 molting CL differed with treatment (ANOVA, $F_{2,46} = 4.742$, p = 0.013; Figure 2). Crab 259 from the pH 7.5 treatment were on average smaller than crab from the ambient treatment 260 (Tukey's HSD, p = 0.010); average size did not differ among the other treatments (Figure 261 2). On average, crab CL increased by 6.0% (SE = 0.614) after molting, and the percent 262 increase varied with pH treatment (ANOVA, $F_{2,43} = 4.690$, p = 0014; Figure 3). The 263 average percent increase in CL was higher for the ambient treatment than the pH 7.8 264 (Tukey's HSD, p = 0.031) and pH 7.5 (Tukey's HSD, p = 0.027) treatments, which did 265 not differ from each other (Figure 3). Crabs in pH 7.5 water took longer to molt than 266 those in ambient or pH 7.8 water (ANOVA, $F_{2,48} = 16.189$, p < 0.0005; Figure 3). Average wet weight at the end of the experiment also differed with treatment (ANOVA, 267 $F_{2,20} = 7.978$, p = 0.003; on average, pH 7.5 treatment crab weighed less than ambient 268 269 (Tukey's HSD, p = 0.027) and pH 7.8 (Tukey's HSD, p = 0.002) treatment crab, which 270 did not differ from each other (Figure 4). 271 Morphology of golden king crab juveniles did not vary with pH treatment 272 (Pseudo- $F_{2,73} = 0.686$, p = 0.697) but did with molt number (Pseudo- $F_{1,73} = 15.388$, p < 0.00005) and with their interaction (Pseudo- $F_{2,73} = 2.243$, p = 0.030). Post-hoc 273 274 PERMANOVA pairwise comparisons indicated that the morphology of both the ambient

and pH 7.8 crabs changed between the initial morphology and after the first molt

276 (ambient: t = 4.074, p < 0.00005, pH 7.8: t = 2.660, p = 0.0004), but this was not true of 277 the pH 7.5 crabs (t = 1.237, p = 0.194; Fig. 5). Despite this, there were no differences in 278 morphology among the pH treatment groups either initially or after the first molt (p > 279 0.10 in all cases).

280 In the best-fit model of mortality, mortality was treated as a combination of 281 baseline mortality (i.e., not associated with molting), which was constant over time, and 282 mortality during molting Both types of mortality differed among pH treatments; no other 283 models had any support at all (Table 2). In all three treatments, there was a low baseline 284 mortality rate throughout the experiment with a substantial increase in mortality rate 285 during the time molting was occurring (Fig. 6). Both baseline mortality and the mortality 286 during molting were lower in the ambient treatment than in the pH 7.8 and pH 7.5 287 treatment. Baseline mortality was similar between pH 7.8 and pH 7.5, but mortality 288 during molting was higher at pH 7.5 (Fig. 5, Table 2). There was a high degree of 289 correspondence between successfully molting and mortality risk; in the ambient and pH 290 7.8 treatment no crab that successfully molted subsequently died and in the pH 7.5 only 291 three crabs that successfully molted later died. In addition, of the 60 crabs that died, 12 292 died while in the process of molting. The sigmoidal models predicted peak mortality a 293 little after the peak in molting in all three treatments (Fig. 6). At the end of the 294 experiment there were 12 crabs surviving in the ambient treatment, 8 in the pH 7.8, and 8 295 in the pH 7.5.

296

297 Discussion

Juvenile golden king crabs exposed to pH levels below surface ambient had significantly lower growth and survival than those exposed to surface ambient water. These results suggest that population dynamics of golden king crab could be affected by ocean acidification within this century and are similar to the effects of ocean acidification on other species of king crab in Bering Sea (Long et al. 2013b; Long et al. 2017). Higher mortality and slower growth would decrease population abundance and productivity and have a corresponding effect on the directed fisheries.

305 Juvenile golden king crab showed decreased growth under low pH conditions. 306 Time to first molt was increased by 34% in pH 7.5 compared to surface ambient pH and 307 the growth increment was 49 and 45% lower in pH 7.5 and 7.8 compared to surface 308 ambient. Overall, this resulted in crabs that were larger in the surface ambient treatment than in the other two by the end of the experiment. This is similar to what has been 309 310 observed in other lithodid species; both red and blue king crabs (Paralithodes 311 *camtschaticus* and *P. platypus*) have slower growth under reduced pH (Long et al. 2013b; 312 Long et al. 2017). Likewise, other crustacean species, such the American lobster 313 (Homarus americanus), exhibit decreased growth under ocean acidification (Small et al. 314 2016; McLean et al. 2018). In golden king crab, however, the change in growth was not 315 accompanied by changes in morphology. Both H. americanus and the shrimp Palaemon 316 pacificus exhibit deformities under low pH (Kurihara et al. 2008; Agnalt et al. 2013), 317 suggesting that low pH can interfere with cuticle formation or hardening. Similarly, red 318 and blue king crab did not exhibit any morphological change associated with pH (Long et 319 al. 2013b; Long et al. 2017), although the micromechanical properties of their 320 exoskeletons were affected (Coffey et al. 2017).

321 Decreased growth could have several effects at the population or ecological scale. 322 Slower growth would either increase the time it takes for crabs to reach maturity or 323 decrease the size-at-maturity. The longer it takes to achieve maturity the more likely a 324 crab is to die prior to that, and a decrease size-at-maturity would decrease fecundity. 325 This would likely correspond with lower stock productivity. Further, for most species of 326 crabs, smaller crabs are more vulnerable to predation. Red king crab juveniles have a 327 decreasing chance of being predated upon as they get larger (Pirtle et al. 2012; Long et al. 328 2018), and juvenile blue crab, *Callinecetes sapidus*, suffer high predatory mortality when 329 small, but get a partial size refute from predation once they reach 40 mm carapace width 330 (Johnson et al. 2008). Thus, decrease growth could indirectly increase predatory 331 mortality for juvenile crabs.

332 Mortality of golden king crab juveniles was increased at both pH 7.8 and 7.5. 333 This is a common response among crustaceans; red and blue king crab (Paralithodes 334 *camtschaticus* and *P. platypus*), Tanner crab (*Chionoecetes bairdi*), the European lobster 335 (Homarus gammarus), and the shrimps Metapenaeus joyneri and Palaemon pacificus all 336 suffer increased mortality under acidified conditions (Kurihara et al. 2008; Dissanayake 337 and Ishimatsu 2011; Long et al. 2013b; Small et al. 2016; Long et al. 2017). The best-fit 338 model of mortality split the mortality between molting and all other sources and was an 339 excellent fit to the data (as estimated visually, Fig. 6). Both sources of mortality were 340 increased under reduced pH. For golden king crab, the majority of the mortality in all 341 treatments was associated with molting. The peak in mortality rate in all three treatments 342 occurred just slightly after the average time-to-molt (Fig. 6, Table 2), suggesting that 343 many of the crabs which died were those that did not molt successfully, and many crabs

344 died while trying to molt. Molting is a physiologically complicated and energetically 345 expensive process in crustaceans (Roberts 1957; Mangum et al. 1985; Chang 1995), so it 346 is not surprising to see elevated mortality prior to molting under physiologically stressful 347 conditions. A similar association between mortality and molting under acidified 348 conditions occurs in juvenile *H. gammarus*, mature female red king crab, and adult *M.* 349 joyneri (Dissanayake and Ishimatsu 2011; Long et al. 2013a; Small et al. 2016). 350 The decreased growth and increased mortality in golden king crab in acidified 351 waters suggests that the crabs are responding physiologically to the decreased pH. Most 352 decapod species respond to increased pCO_2 by increasing bicarbonate transport into the 353 hemolymph, which in turn reduces or completely eliminates the change in hemolymph 354 pH (e.g., Pane and Barry 2007; Appelhans et al. 2012; Knapp et al. 2016). This active 355 transport is likely energetically expensive; juvenile red and blue king crabs both greatly 356 increase respiration rates immediately after exposure to acidified water: 73% for red king 357 crab and 178% for blue (Long et al. 2019). If the energetic costs of maintaining acid-358 base homeostasis are higher under reduced pH conditions, then that would leave less 359 energy available for other biological functions, such as growth, and indirectly cause an 360 increased morality rate during energetically expensive life-history events such as molting. 361 Alternatively, as it the case for other deep water species (Pane and Barry 2007), golden 362 king crab may not be able to regulate their hemolymph pH or may only be able to 363 partially compensate for reduced environmental pH. Altered hemolymph and 364 intracellular pH would have a suite of physiological consequences including decrease 365 enzymatic actives (Tanner et al. 2006) which would could also explain the decreased 366 growth and increased mortality observed.

367 That juvenile golden king crab should be negatively affected at a pH they are 368 known to live at naturally is a surprising result; one would presume that the animals are 369 well adapted to those conditions. There are several non-exclusive possibilities that may 370 explain these patterns. It is possible that the growth and mortality rates that we observed 371 at pH 7.8 are reflective of what actually occurs *in situ*. This is possible, but it seems 372 unlikely that a species would not be better adapted to its local environment. 373 Alternatively, it could be that laboratory rearing of larvae at surface water pH resulted in 374 juveniles that were physiologically adapted or acclimated to surface pH, either through 375 selection of individuals adapted to surface pH, phenotypic plasticity induced at the larval 376 stage, or a combination of these mechanisms. Species including the Sydney rock oyster 377 (Saccostrea glomerata), the calanoid copepod (Pseudocalanus acuspes), and the Manila 378 clam (*Ruditapes philippinarum*) show high evolutionary potential in selective breeding 379 and transgenerational experiments (Parker et al. 2012; Parker et al. 2015; Thor and 380 Dupont 2015; Zhao et al. 2018), although other species do not (Langer et al. 2019). 381 We hypothesize, therefore, that golden king crab have a potential for 382 acclimatization or adaptation to a range of pH conditions at least within the range of pHs 383 that occur along their depth distribution; though this may not extend to lower pHs. 384 Although juveniles in the Aleutian Islands population of golden king crab, where the crabs in this study came from, occur at depths greater than 500 m (Blau et al. 1996), 385 386 populations in British Columbia fjords occur at depths from 50-400 m (Sloan 1985). 387 Given that pH is highly depth dependent in such systems, this suggests there is wide 388 variance in golden king crab tolerance for a range of pH conditions both with and among 389 populations.

390	Future work should focus on examination of carryover effects on juveniles from						
391	the embryo and larval stages. If, as hypothesized above, the response of juvenile golden						
392	king crab is determined by the pH at larval stage, a fully crossed experiment would test						
393	this effectively. Further, a comparison of gene expression and hemolymph chemistry						
394	among the treatments could help to pinpoint the underlying biochemical mechanisms.						
395	Finally, understanding the interactive effect of other potential co-stressors, including						
396	increased temperature and low dissolved oxygen is essential for this deep dwelling, cold-						
397	water species (Breitburg et al. 2015).						
398							
399	Declarations and compliance with ethical standards:						
400	Funding: This work was funded through the NOAA Ocean Acidification Program.						
401	Conflicts of interest/Competing interests: The authors affirm that they have no conflicts						
402	of Interests.						
403	Ethics approval: Not applicable.						
404	Consent to participate: Not applicable.						
405	Consent for publication: Not applicable						
406	Availability of data and materials: The datasets generated during and/or analyzed during						
407	the current study included as a supplement to this paper.						
408	Code availability: The code generated during the current study is available from the						
409	corresponding author on reasonable request.						
410							
411							
412	References						
+13							

414	Agnalt AL, Grefsrud ES, Farestveit E, Larsen M, Keulder F (2013) Deformities in larvae
415	and juvenile European lobster (Homarus gammarus) exposed to lower pH at two
416	different temperatures. Biogeosciences 10: 7883-7895 doi 10.5194/bg-10-7883-
417	2013
418	Appelhans YS, Thomsen J, Pansch C, Melzner F, Wahl M (2012) Sour times: seawater
419	acidification effects on growth, feeding behaviour and acid-base status of Asterias
420	rubens and Carcinus maenas. Mar Ecol Prog Ser 459: 85-98 doi
421	10.3354/meps09697
422	Blau SF. Pengilly D. Tracy DA (1996) Distribution of golden king crabs by sex, size, and
423	depth zones in the Eastern Aleutian Islands, Alaska. In: Baxter B, Donaldson WE,
424	Paul AJ, Otto RS, Witherell DB (eds) High Latitude Crabs: Biology, Management
425	and Economics Alaska Sea Grant College Program, University of Alaska
426	Fairbanks, Anchorage, AK, pp 167-185
427	Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C,
428	Ilyina T, Seferian R (2013) Multiple stressors of ocean ecosystems in the 21st
429	century: projections with CMIP5 models. Biogeosciences 10: 6225–6245 doi
430	10.5194/bg-10-6225-2013
431	Breitburg DL, Salisbury J, Bernhard JM, Cai W-J, Dupont S, Doney SC, Kroeker KJ,
432	Levin LA, Long WC, Milke LM (2015) And on top of all that Coping with
433	ocean acidification in the midst of many stressors. Oceanography 28: 48-61 doi
434	10.5670/oceanog.2015.31
435	Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A
436	practical information-theoretic approach. Springer Science + Business Media,
437	New York
438	Byrne RH, Mecking S, Feely RA, Liu X (2010) Direct observations of basin-wide
439	acidification of the North Pacific Ocean. Geophys Res Lett 37: L02601
440	Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425: 365
441	doi 10.1038/425365a
442	Chang ES (1995) Physiological and biochemical changes during the molt cycle in
443	decapod crustaceans: an overview. J Exp Mar Biol Ecol 193: 1-14
444	Coffey WD, Yarram A, Matoke B, Long WC, Swiney KM, Foy RJ, Dickenson G (2017)
445	Ocean acidification leads to altered micromechanical properties of the
446	mineralized cuticle of juvenile red and blue king crabs. J Exp Mar Biol Ecol 495:
447	1-12 doi 10.1016/j.jembe.2017.05.011
448	Cross JN, Mathis JT, Bates NR, Byrne RH (2013) Conservative and non-conservative
449	variations of total alkalinity on the southeastern Bering Sea shelf. Mar Chem 154:
450	100-112 doi 10.1016/j.marchem.2013.05.012
451	deVries MS, Webb SJ, Tu J, Cory E, Morgan V, Sah RL, Deheyn DD, Taylor JRA
452	(2016) Stress physiology and weapon integrity of intertidal mantis shrimp under
453	future ocean conditions. Scientific Reports 6: 15 doi 10.1038/srep38637
454	Dissanayake A, Ishimatsu A (2011) Synergistic effects of elevated CO ₂ and temperature
455	on the metabolic scope and activity in a shallow-water coastal decapod
456	(Metapenaeus joyneri; Crustacea: Penaeidae). ICES J Mar Sci 68: 1147-1154 doi
457	10.1093/icesjms/fsq188
458	DOE (1994) Handbook of methods for the analysis of the various parameters of the
459	carbon dioxide system in sea water. Version 2. U.S. Department of Energy

460	Donaldson W, Byersdorfer S (2005) Biological field techniques for lithodid crabs. Alaska								
461	Sea Grant College Program, University of Alaska Fairbanks, Fairbanks, AK								
462	Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2013) Long-term and trans-								
463	life-cycle effects of exposure to ocean acidification in the green sea urchin								
464	Strongylocentrotus droebachiensis. Mar Biol 160: 1835-1843 doi								
465	10.1007/s00227-012-1921-x								
466	Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high								
467	latitudes: The bellweather. Oceanography 22: 160-171								
468	Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine								
469	fauna and ecosystem processes. ICES J Mar Sci: 414-432 doi								
470	10.1093/icesjms/fsn048								
471	Garber-Yonts B, Lee J (2013) Stock Assessment and Fishery Evaluation Report for King								
472	and Tanner Crab Fisheries of the Bering Sea and Aleutian Islands Regions:								
473	Economic Status of the BSAI Crab Fisheries, 2013. National Oceanic and								
474	Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries								
475	Science Center, Seattle, Washington								
476	Glandon HL, Miller TJ (2017) No effect of high pCO ₂ on juvenile blue crab, <i>Callinectes</i>								
477	sapidus, growth and consumption despite positive responses to concurrent								
478	warming. ICES J Mar Sci 74: 1201-1209 doi 10.1093/icesjms/fsw171								
479	Glandon HL, Paynter KT, Rowe CL, Miller TJ (2019) Resilience of oxygen consumption								
480	rates in the juvenile blue crab Callinectes sapidus to future predicted increases in								
481	environmental temperature and pCO_2 in the mesohaline Chesapeake Bay. J								
482	Shellfish Res 38: 711-723 doi 10.2983/035.038.0323								
483	Hans S, Fehsenfeld S, Treberg JR, Weihrauch D (2014) Acid-base regulation in the								
484	Dungeness crab (Metacarcinus magister). Mar Biol 161: 1179-1193 doi								
485	10.1007/s00227-014-2409-7								
486	Heinrich L, Krause T (2017) Fishing in acid waters: A vulnerability assessment of the								
487	Norwegian fishing industry in the face of increasing ocean acidification. Integr								
488	Environ Assess Manage 13: 778-789 doi 10.1002/ieam.1843								
489	IPCC (2014) Climate Change 2014 Fifth Assessment Synthesis Report								
490	Johnson EG, Hines AH, Kramer MA, Young AC (2008) Importance of season and size of								
491	release to stocking success for the blue crab in Chesapeake Bay. Rev Fish Sci 16:								
492	243-253								
493	Kelly MW, Padilla-Gamino JL, Hofmann GE (2013) Natural variation and the capacity to								
494	adapt to ocean acidification in the keystone sea urchin Strongylocentrotus								
495	<i>purpuratus</i> . Global Change Biol 19: 2536-2546 doi 10.1111/gcb.12251								
496	Knapp JL, Bridges CR, Krohn J, Hoffman LC, Auerswald L (2016) The effects of								
497	hypercapnia on the West Coast rock lobster (<i>Jasus lalandii</i>) through acute								
498	exposure to decreased seawater pH - Physiological and biochemical responses. J								
499	Exp Mar Biol Ecol 4/6: 58-64 doi 10.1016/j.jembe.2015.12.001								
500	Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso								
501	JP (2013) Impacts of ocean acidification on marine organisms: quantifying								
502	sensitivities and interaction with warming. Global Change Biol 19: 1884-1896								
503	Kurinara H, Matsui M, Furukawa H, Hayashi M, Ishimatsu A (2008) Long-term effects								
304	of predicted future seawater CO_2 conditions on the survival and growth of the								

505	marine shrimp Palaemon pacificus. J Exp Mar Biol Ecol 367: 41-46 doi									
506	10.1016/j.jembe.2008.08.016									
507	Langer JAF, Meunier CL, Ecker U, Horn HG, Schwenk K, Boersma M (2019)									
508	Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to									
509	ocean acidification: a long-term laboratory investigation. Mar Ecol Prog Ser 619:									
510	35-51 doi 10.3354/meps12950									
511	Lavigne H, Gattuse J (2012) seacarb: Seawater carbonate chemistry with R.									
512	http://CRAN.R-project.org/package=seacarb									
513	Lee YH, Jeong CB, Wang MH, Hagiwara A, Lee JS (2020) Transgenerational									
514	acclimation to changes in ocean acidification in marine invertebrates. Mar Pollut									
515	Bull 153: 18 doi 10.1016/j.marpolbul.2020.111006									
516	Long WC, Cummiskey P, Munk JE (2018) How does stocking density affect									
517	enhancement success for hatchery-reared red king crab? Can J Fish Aquat Sci 75:									
518	1940-1948 doi 10.1139/cjfas-2017-0330									
519	Long WC, Pruisner P, Swiney KM, Foy R (2019) Effects of ocean acidification on									
520	respiration, feeding, and growth of juvenile red and blue king crabs (Paralithodes									
521	camtschaticus and P. platypus). ICES J Mar Sci 76: 1335-1343 doi									
522	10.1093/icesjms/fsz090									
523	Long WC, Swiney KM, Foy RJ (2013a) Effects of ocean acidification on the embryos									
524	and larvae of red king crab, Paralithodes camtschaticus. Mar Pollut Bull 69: 38-									
525	47 doi 10.1016/j.marpolbul.2013.01.011									
526	Long WC, Swiney KM, Harris C, Page HN, Foy RJ (2013b) Effects of ocean									
527	acidification on juvenile red king crab (Paralithodes camtschaticus) and Tanner									
528	crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS									
529	ONE 8: e60959 doi 10.1371/journal.pone.0060959									
530	Long WC, Van Sant SB, Swiney KM, Foy R (2017) Survival, growth, and morphology									
531	of blue king crabs: Effect of ocean acidification decreases with exposure time.									
532	ICES J Mar Sci 74: 1033-1041 doi 10.1093/icesjms/fsw197									
533	Mangum C, McMahon B, Defur P, Wheatly M (1985) Gas exchange, acid-base balance,									
534	and the oxygen supply to the tissues during a molt of the blue crab <i>Callinectes</i>									
535	sapidus. J Crust Biol 5: 188-206									
536	Mathis JT, Cross JN, Evans W, Doney SC (2015) Ocean acidification in the surface									
537	waters of the Pacific-Arctic boundary regions. Oceanography 28: 122-135 doi									
538	10.5670/oceanog.2015.36									
539	McLean EL, Katenka NV, Seibel BA (2018) Decreased growth and increased shell									
540	disease in early benthic phase <i>Homarus americanus</i> in response to elevated CO ₂ .									
541	Mar Ecol Prog Ser 596: 113-126									
542	Menu-Courey K, Noisette F, Piedalue S, Daoud D, Blair T, Blier PU, Azetsu-Scott K,									
543	Calosi P (2019) Energy metabolism and survival of the juvenile recruits of the									
544	American lobster (Homarus americanus) exposed to a gradient of elevated									
545	seawater pCO ₂ . Mar Environ Res 143: 111-123 doi									
546	10.1016/j.marenvres.2018.10.002									
547	Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term									
548	hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea									
549	crab. Mar Ecol Prog Ser 334: 1-9 doi 10.3354/meps334001									

550	Parker LM, O'Connor WA, Raftos DA, Pörtner H-O, Ross PM (2015) Persistence of
551	positive carryover effects in the oyster, Saccostrea glomerata, following
552	transgenerational exposure to ocean acidification. PLoS ONE 10: e0132276 doi
553	10.1371/journal.pone.0132276
554	Parker LM, Ross PM, O'Connor WA, Borysko L, Raftos DA, Pörtner HO (2012) Adult
555	exposure influences offspring response to ocean acidification in ovsters. Global
556	Change Biol 18: 82-92
557	Pirtle JL, Eckert GL, Stoner AW (2012) Habitat structure influences the survival and
558	predator-prev interactions of early invenile red king crab <i>Paralithodes</i>
559	camtschaticus. Mar Ecol Prog Ser 465: 169-184 doi 10.3354/meps09883
560	Punt AE, Dalton MG, Foy RJ (2020) Multispecies yield and profit when exploitation
561	rates vary spatially including the impact on mortality of ocean acidification on
562	North Pacific crab stocks. Fisheries Research 225: 18 doi
563	10.1016/i.fishres.2019.105481
564	Punt AE, Fov RJ, Dalton MG, Long WC, Swinev KM (2016) Effects of long term
565	exposure to ocean acidification on future southern Tanner crab (Chionoecetes
566	<i>bairdi</i>) fisheries management. ICES J Mar Sci 73: 849-864
567	Roberts JL (1957) Thermal acclimation of metabolism in the crab <i>Pachygrapsus</i>
568	crassipes Randall. I. The influence of body size, starvation, and molting. Physiol
569	Zool 30: 232-242
570	Shirley T, Zhou S (1997) Lecithotrophic development of the golden king crab Lithodes
571	aequispinus (Anomura: Lithodidae). J Crust Biol 17: 207-216
572	Shirley TC (2006) Cultivation potential of golden king crab, <i>Lithodes aequispinus</i> . In:
573	Stevens BG (ed) Alaska Crab Stock Enhancement and Rehabilitation. Alaska Sea
574	Grant College Program, Kodiak, Alaska, pp 47-54
575	Sloan N (1985) Life history characteristics of fjord-dwelling golden king crabs <i>Lithodes</i>
576	aequispina. Mar Ecol Prog Ser 22: 219-228
577	Small DP, Calosi P, Boothroyd D, Widdicombe S, Spicer JI (2016) The sensitivity of the
578	early benthic juvenile stage of the European lobster Homarus gammarus (L.) to
579	elevated pCO ₂ and temperature. Mar Biol 163: 1-12
580	Swiney KM, Long WC, Foy RJ (2016) Effects of high pCO2 on Tanner crab reproduction
581	and early life history- Part I: long-term exposure reduces hatching success and
582	female calcification, and alters embryonic development ICES J Mar Sci 73: 825-
583	835
584	Swiney KM, Long WC, Foy RJ (2017) Decreased pH and increased temperatures affect
585	young-of-the-year red king crab (Paralithodes camtschaticus). ICES J Mar Sci
586	74: 1191-1200 doi 10.1093/icesjms/fsw251
587	Swiney KM, Long WC, Persselin SL (2013) The effects of holding space on juvenile red
588	king crab (Paralithodes camtschaticus) growth and survival. Aquacult Res 44:
589	1007–1016 doi 10.1111/j.1365-2109.2012.03105.x
590	Tanner CA, Burnett LE, Burnett KG (2006) The effects of hypoxia and pH on
591	phenoloxidase activity in the Atlantic blue crab, Callinectes sapidus. Comparative
592	Biochemistry and Physiology Part A: Molecular & Integrative Physiology 144:
593	218-223
594	Tarverdieva MI, Zgurovsky KA (1985) On food composition of the deep-water crab
595	species Lithodes aequispina Benedict and Chionoecetes tanneri Rathbun in the

596	Bering Sea and Okhotsk seas. In: Davis SK, Gaffney F, McCrary J, Paul AJ, Otto
597	RS (eds) Proceedings of the International King Crab Symposium. Alaska Sea
598	Grant College Program, University of Alaska Fairbanks, Anchorage, AK, pp 319-
599	329
600	Thor P, Bailey A, Dupont S, Calosi P, Soreide JE, De Wit P, Guscelli E, Loubet-Sartrou
601	L, Deichmann IM, Candee MM, Svensen C, King AL, Bellerby RGJ (2018)
602	Contrasting physiological responses to future ocean acidification among Arctic
603	copepod populations. Global Change Biol 24: E365-E377 doi 10.1111/gcb.13870
604	Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during
605	ocean acidification in a ubiquitous planktonic copepod. Global Change Biol 21:
606	2261-2271 doi 10.1111/gcb.12815
607	Turra A, Ragagnin MN, McCarthy ID, Fernandez WS (2020) The effect of ocean
608	acidification on the intertidal hermit crab Pagurus criniticornis is not modulated
609	by cheliped amputation and sex. Mar Environ Res 153: 10 doi
610	10.1016/j.marenvres.2019.104794
611	Walther K, Anger K, Portner HO (2010) Effects of ocean acidification and warming on
612	the larval development of the spider crab Hyas araneus from different latitudes
613	(54 degrees vs. 79 degrees N). Mar Ecol Prog Ser 417: 159-170 doi
614	10.3354/meps08807
615	Zhao L, Liu B, An W, Deng Y, Lu Y, Liu B, Wang L, Cong Y, Sun X (2019) Assessing
616	the impact of elevated pCO ₂ within and across generations in a highly invasive
617	fouling mussel (Musculista senhousia). Sci Total Environ 689: 322-331 doi
618	https://doi.org/10.1016/j.scitotenv.2019.06.466
619	Zhao LQ, Yang F, Milano S, Han TK, Walliser EO, Schone BR (2018) Transgenerational
620	acclimation to seawater acidification in the Manila clam <i>Ruditapes philippinarum</i> :
621	Preferential uptake of metabolic carbon. Sci Total Environ 627: 95-103 doi
622	10.1016/j.scitotenv.2018.01.225
623	
624	
625	
(2)	
626	
627	
027	
628	
020	

Treatment	Temp °C	Salinity	pH⊦	pCO₂ µatm	HCO₃⁻	CO3 ⁻²	DIC	Alkalinity	$\Omega_{Aragonite}$	$\Omega_{Calcite}$
		PSU			mmol/kg	mmol/kg	mmol/kg	mmol/kg		
Ambient	5.05(0.28)	31.30(0.28)	8.15(0.07)	326.28(54.25)	1.88(0.03)	0.11(0.02)	2.00(0.03)	2.15(0.02)	1.67(0.23)	2.67(0.37)
pH 7.8	5.26(0.49)	31.34(0.30)	7.80(0.03)	779.20(30.74)	2.01(0.03)	0.05(0.00)	2.11(0.03)	2.14(0.01)	0.80(0.04)	1.27(0.06)
pH 7.5	5.11(0.34)	31.32(0.29)	7.52(0.05)	1561.76(65.62)	2.06(0.01)	0.03(0.00)	2.17(0.01)	2.14(0.02)	0.41(0.02)	0.66(0.03)

Table 1. The mean and standard deviation (SD) of water chemistry parameters in the three treatments. pH_F (free scale) and

temperature were measured daily, DIC, salinity, and alkalinity were measured weekly, and all other parameters were calculated.

Table 2: AIC model selection table for models of golden king crab mortality at three different pHs. Models include constant (baseline) mortality rate models (m), sigmoidal models (Sigmoid) to capture mortality during molt, and models including both constant (baseline) mortality and mortality during molt (m_{molt}). (T) indicates that the model was allowed to vary with pH treatment. See Methods for details on model development. (K) indicates the number of parameters. The best fit model is indicated in bold. Parameter estimates with the standard errors included parenthetically are given for the best-fit model.

Model	К	AICc	ΔΑΙϹ	Likelihood	AIC₀ weight				
т	1	1932.32	710.21	0.00	0.00				
m(T)	3	1820.89	598.79	0.00	0.00				
Sigmiod	3	1458.36	236.25	0.00	0.00				
Sigmiod(T)	9	1340.59	118.49	0.00	0.00				
m, m _{molt}	4	1451.20	229.10	0.00	0.00				
m, m _{molt} (T)	10	1228.16	6.05	0.05	0.05				
m(T), m _{molt} (T)	12	1222.10	0.00	1.00	0.95				
Parameter estimates for best-fit model									
Treatment	m	T ₅₀	b	d					
ambient	0.0016(0.0006)	86.39(9.29)	5.95(3.45)	0.66(0.25)					
pH 7.8	0.0027(0.0003)	94.61(3.44)	9.24(1.93)	0.97(0.13)					
pH 7.5	0.0026(0.0001)	115.38(1.83)	30.5(7.93)	0.78(0.13)					

Figure 1. Young-of-the-year golden king crab morphometric measurements: carapace width (CW), carapace length (CL), rostrum base width (RW), orbital spine width (OW), and the first spine length (SL).

Figure 2. Comparison of young-of-the-year golden king crab carapace length (mm) after molting by pH treatment. Bars are means with standard error. Bars with different letters above them differ significantly.

Figure 3. a) Percentage increase in young-of-the-year golden king crab carapace length between initial size and after molting and b) the time in to molt by treatment. Bars are means with standard error. Bars with different letters above them differ significantly.

Figure 4. Young-of-the-year golden king crab wet weight at the end of the experiment. Bars are means with standard error. Bars with different letters above them differ significantly.

Figure 5: Non-metric multidimensional scaling plot of juvenile golden king crab morphometric measurements (see Fig. 1) for crabs held in three pH treatments. "Initial" represents the crabs when first placed into the treatments and "1st molt" represents measurements made after the first molt.

Figure 6. A) Percent of initial number young-of-the-year golden king crab surviving on each day by pH treatment and best-fit model (model m(T), mmolt(T), Table 2). Stepwise lines represent observed survival and smoothed lines predicted survival. B) Daily mortality rates predicted by the best-fit model for each pH treatment. Horizontal lines represent the average days to molt for each of the pH treatments.

Supplement 1: The data from this project that and the associated metadata are included in a single zip folder with separate files for the metadata and each data table.